login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309828
Squares formed by concatenating k and 2*k+1.
2
25, 49, 1225, 4489, 112225, 444889, 11122225, 44448889, 816416329, 1111222225, 1451229025, 3832476649, 4444488889, 111112222225, 444444888889, 10185602037121, 11111122222225, 44444448888889, 46355849271169, 997230019944601, 1111111222222225, 1231148024622961
OFFSET
1,1
COMMENTS
The sequence is infinite. The squares of the form 66...67^2 = 4..48..89 are terms.
Another infinite family is the squares 33...35^2 = 1...122...25. - Robert Israel, Aug 20 2019
REFERENCES
Ion Cucurezeanu, Perfect squares and cubes of integers, Ed. Gil, Zalău, (2007), ch. 4, p. 25, pr. 211, 212 (in Romanian).
LINKS
EXAMPLE
5^2 = 25 = 2_(2 * 2 + 1);
7^2 = 49 = 4_(2 * 4 + 1);
35^2 = 1225 = 12_(2 * 12 + 1);
61907^2 = 3832476649 = 38324_(2 * 38324 + 1).
MAPLE
F:= proc(m) local x, X, A;
X:= [numtheory:-rootsunity(2, 10^m+2)];
A:= map(x -> (x^2-1)/(10^m+2), X);
A:= sort(select(x -> 2*x+1>=10^(m-1) and 2*x+1<10^m, A));
op(map(x -> x*10^m+2*x+1, A))
end proc:
subsop(1=NULL, [seq(F(m), m=1..10)]); # Robert Israel, Aug 20 2019
MATHEMATICA
Select[Array[FromDigits@ Flatten@ IntegerDigits[{#, 2 # + 1}] &, 10^5],
IntegerQ@ Sqrt@ # &] (* Michael De Vlieger, Aug 19 2019 *)
PROG
(Magma) [a:n in [1..30000000]|IsSquare(a) where a is 10^(#Intseq(2*n+1))*n+2*n+1];
(Python)
def Test(n):
s = str(n)
ps, ss = s[0:len(s)//2], s[len(s)//2:len(s)]
return int(ss) == 2*int(ps)+1 and s[len(s)//2] != "0"
n, a = 1, 4
while n < 23:
if Test(a*a):
print(n, a*a)
n = n+1
a = a+1 # A.H.M. Smeets, Aug 19 2019
(Python)
from itertools import count, islice
from sympy.ntheory.primetest import is_square
def A309828_gen(): # generator of terms
return filter(is_square, (int(str(k)+str((k<<1)+1)) for k in count(1)))
A309828_list = list(islice(A309828_gen(), 20)) # Chai Wah Wu, Feb 20 2023
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, Aug 18 2019
STATUS
approved