login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181719
a(n) = A133473(n+1)^2.
2
25, 1225, 112225, 11122225, 1111222225, 111112222225, 11111122222225, 1111111222222225, 111111112222222225, 11111111122222222225, 1111111111222222222225, 111111111112222222222225, 11111111111122222222222225, 1111111111111222222222222225, 111111111111112222222222222225
OFFSET
1,1
FORMULA
a(n) = 100 * A181718(n-1) + 25.
a(n) = 25 * A109344(n-1), for n > 1.
From Colin Barker, Aug 21 2019: (Start)
G.f.: x*(1 - 62*x + 160*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = (5 + 10^n)^2 / 9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>3. (End)
E.g.f.: (1/9)*exp(x)*(25 + 10*exp(9*x) + exp(99*x)). - Stefano Spezia, Aug 21 2019 after Colin Barker
MATHEMATICA
(5+10^Range[30])^2/9 (* G. C. Greubel, Mar 25 2024 *)
PROG
(PARI) a(n)=(100^n+10*10^n+25)/9 \\ Charles R Greathouse IV, Jun 01 2011
(PARI) Vec(5*x*(1 - 62*x + 160*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^17)) \\ Colin Barker, Aug 21 2019
(Magma) [(100^n+10*10^n+25)/9: n in [1..20]]; // Vincenzo Librandi, Jun 02 2011
(SageMath) [(5+10^n)^2//9 for n in range(1, 31)] # G. C. Greubel, Mar 25 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 17 2010
EXTENSIONS
Formulas edited by Eric M. Schmidt, Oct 29 2012
STATUS
approved