login
A096330
Number of 3-connected planar graphs on n labeled nodes.
3
1, 25, 1227, 84672, 7635120, 850626360, 112876089480, 17381709797760, 3046480841900160, 598731545755324800, 130389773403373545600, 31163616486434838067200, 8109213009296586130944000, 2282014010657773764160588800, 690521215428258768326957184000
OFFSET
4,2
COMMENTS
Recurrence known, see Bodirsky et al.
REFERENCES
M. Bodirsky, C. Groepl and M. Kang: Generating Labeled Planar Graphs Uniformly At Random; ICALP03 Eindhoven, LNCS 2719, Springer Verlag (2003), 1095 - 1107.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 419.
LINKS
M. Bodirsky, C. Groepl and M. Kang, Generating Labeled Planar Graphs Uniformly At Random, Theoretical Computer Science, Volume 379, Issue 3, 15 June 2007, pp. 377-386.
PROG
(PARI)
Q(n, k) = { \\ c-nets with n-edges, k-vertices
if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k, i)*i*(i-1)/2*
(binomial(2*n-2*k+2, k-i)*binomial(2*k-2, n-j) -
4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
};
a(n) = sum(k=(3*n+1)\2, 3*n-6, n!*Q(k, n)/(4*k));
apply(a, [4..18]) \\ Gheorghe Coserea, Aug 11 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Steven Finch, Aug 02 2004
STATUS
approved