The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096330 Number of 3-connected planar graphs on n labeled nodes. 3
 1, 25, 1227, 84672, 7635120, 850626360, 112876089480, 17381709797760, 3046480841900160, 598731545755324800, 130389773403373545600, 31163616486434838067200, 8109213009296586130944000, 2282014010657773764160588800, 690521215428258768326957184000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,2 COMMENTS Recurrence known, see Bodirsky et al. REFERENCES M. Bodirsky, C. Groepl and M. Kang: Generating Labeled Planar Graphs Uniformly At Random; ICALP03 Eindhoven, LNCS 2719, Springer Verlag (2003), 1095 - 1107. Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 419. LINKS Gheorghe Coserea, Table of n, a(n) for n = 4..104 M. Bodirsky, C. Groepl and M. Kang, Generating Labeled Planar Graphs Uniformly At Random, Theoretical Computer Science, Volume 379, Issue 3, 15 June 2007, pp. 377-386. PROG (PARI) Q(n, k) = { \\ c-nets with n-edges, k-vertices   if (k < 2+(n+2)\3 || k > 2*n\3, return(0));   sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k, i)*i*(i-1)/2*   (binomial(2*n-2*k+2, k-i)*binomial(2*k-2, n-j) -   4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1)))); }; a(n) = sum(k=(3*n+1)\2, 3*n-6, n!*Q(k, n)/(4*k)); apply(a, [4..18]) \\ Gheorghe Coserea, Aug 11 2017 CROSSREFS Cf. A066537, A096331, A096332, A290326. Sequence in context: A014769 A012851 A181719 * A174751 A042203 A042200 Adjacent sequences:  A096327 A096328 A096329 * A096331 A096332 A096333 KEYWORD nonn AUTHOR Steven Finch, Aug 02 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 19:28 EDT 2021. Contains 345388 sequences. (Running on oeis4.)