login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174751
x-values in the solution to x^2-39*y^2=1.
2
1, 25, 1249, 62425, 3120001, 155937625, 7793761249, 389532124825, 19468812480001, 973051091875225, 48633085781281249, 2430681237972187225, 121485428812828080001, 6071840759403431812825, 303470552541358762561249
OFFSET
1,2
COMMENTS
The corresponding values of y of this Pell equation are in A174776.
FORMULA
a(n) = 50*a(n-1)-a(n-2) with a(1)=1, a(2)=25.
G.f.: x*(1-25*x)/(1-50*x+x^2).
MATHEMATICA
LinearRecurrence[{50, -1}, {1, 25}, 30]
Rest[CoefficientList[Series[x (1-25x)/(1-50x+x^2), {x, 0, 20}], x]] (* Harvey P. Dale, Aug 10 2021 *)
PROG
(Magma) I:=[1, 25]; [n le 2 select I[n] else 50*Self(n-1)-Self(n-2): n in [1..20]];
CROSSREFS
Cf. A174776.
Sequence in context: A012851 A181719 A096330 * A042203 A042200 A104593
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 13 2010
STATUS
approved