The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174748 x-values in the solution to x^2-33*y^2=1. 2
 1, 23, 1057, 48599, 2234497, 102738263, 4723725601, 217188639383, 9985953686017, 459136680917399, 21110301368514337, 970614726270742103, 44627167107085622401, 2051879072199667888343, 94341810154077637241377, 4337671388015371645214999 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The corresponding values of y of this Pell equation are in A174772. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Index entries for linear recurrences with constant coefficients, signature (46,-1). FORMULA a(n) = 46*a(n-1)-a(n-2) with a(1)=1 and a(2)=23. G.f.: x*(1-23*x)/(1-46*x+x^2). a(n+1) = S(n,46) - 23*S(n-1,46), n>=0, with Chebyshev's S-polynomials A049310. - Wolfdieter Lang, Jun 19 2013 a(n) = (-4+23/sqrt(33))*(23+4*sqrt(33))^(-n)*(6072+1057*sqrt(33)+sqrt(33)*(23+4*sqrt(33))^(2*n))/2. - Colin Barker, Jun 10 2016 MATHEMATICA LinearRecurrence[{46, -1}, {1, 23}, 30] PROG (MAGMA) I:=[1, 23]; [n le 2 select I[n] else 46*Self(n-1)-Self(n-2): n in [1..20]]; (PARI) Vec(x*(1-23*x)/(1-46*x+x^2) + O(x^20)) \\ Colin Barker, Jun 10 2016 CROSSREFS Cf. A174772. Sequence in context: A167244 A130551 A069479 * A042015 A042012 A128404 Adjacent sequences:  A174745 A174746 A174747 * A174749 A174750 A174751 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Apr 13 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 01:47 EDT 2021. Contains 346456 sequences. (Running on oeis4.)