login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174772 y-values in the solution to x^2 - 33*y^2 = 1. 2
0, 4, 184, 8460, 388976, 17884436, 822295080, 37807689244, 1738331410144, 79925437177380, 3674831778749336, 168962336385292076, 7768592641944686160, 357186299193070271284, 16422801170239287792904, 755091667531814168202300, 34717793905293212449512896 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The corresponding values of x of this Pell equation are in A174748.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Index entries for linear recurrences with constant coefficients, signature (46,-1).

FORMULA

a(n) = 46*a(n-1)-a(n-2) with a(1)=0, a(2)=4.

G.f.: 4*x^2/(1-46*x+x^2).

a(n) = 4*S(n-2,46), n>=1, with Chebyshev's S polynomials A049310 and S(-1,x)=0. - Wolfdieter Lang, Jun 19 2013

a(n) = (-4+23/sqrt(33))*(23+4*sqrt(33))^(-n)*(-1057-184*sqrt(33)+(23+4*sqrt(33))^(2*n))/2. - Colin Barker, Jun 10 2016

EXAMPLE

For n=3 a(3)=46*4-0=184; n=4, a(4)=46*184-4=8460.

MATHEMATICA

LinearRecurrence[{46, -1}, {0, 4}, 30]

PROG

(MAGMA) I:=[0, 4]; [n le 2 select I[n] else 46*Self(n-1)-Self(n-2): n in [1..20]];

(PARI) Vec(4*x^2/(1-46*x+x^2) + O(x^20)) \\ Colin Barker, Jun 10 2016

CROSSREFS

Cf. A174748.

Sequence in context: A322915 A221046 A024266 * A146549 A156905 A202631

Adjacent sequences:  A174769 A174770 A174771 * A174773 A174774 A174775

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Apr 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 16:01 EDT 2022. Contains 354851 sequences. (Running on oeis4.)