login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156905
G.f. A(x) satisfies: A(x) = 1 + x*Sum_{n>=0} log( A(4^n*x) )^n / n!.
3
1, 1, 4, 184, 69568, 238298048, 10444630574080, 6785507740131518464, 63569094414156159478579200, 8469123482983731772132032235429888, 16127763920864889230376762555181238559440896
OFFSET
0,3
FORMULA
G.f. A(x) satisfies: a(n+1) = [x^n] A(x)^(4^n) for n>=0, with a(0)=1.
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 184*x^3 + 69568*x^4 + 238298048*x^5 +...
SERIES REPRESENTATION:
A(x) = 1 + x*[1 + log(A(4x)) + log(A(16x))^2/2! + log(A(64x))^3/3! +...+ log(A(4^n*x))^n/n! +...].
...
GENERATED BY POWERS OF G.F.:
a(n+1) equals the coefficient of x^n in A(x)^(4^n) for n>=0;
the coefficients of A(x)^(4^n) begin:
A^(4^0): [(1), 1, 4, 184, 69568, 238298048, 10444630574080, ...];
A^(4^1): [1, (4), 22, 788, 280625, 954038256, 41781386268864, ...];
A^(4^2): [1, 16, (184), 4464, 1167708, 3830011216, 167171472557448, ...];
A^(4^3): [1, 64, 2272, (69568), 6361840, 15577329728, 669428002912672, ...];
A^(4^4): [1, 256, 33664, 3071744, (238298048), 78858088704, ...];
A^(4^5): [1, 1024, 527872, 182811648, 47958593280, (10444630574080), ...];
In the above table, the diagonal forms this sequence shift left.
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, Vec(Ser(A)^(4^(#A-1)))[ #A])); A[n+1]}
CROSSREFS
Sequence in context: A024266 A174772 A146549 * A202631 A357023 A102194
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 04 2009
STATUS
approved