login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156905 G.f. A(x) satisfies: A(x) = 1 + x*Sum_{n>=0} log( A(4^n*x) )^n / n!. 1
1, 1, 4, 184, 69568, 238298048, 10444630574080, 6785507740131518464, 63569094414156159478579200, 8469123482983731772132032235429888, 16127763920864889230376762555181238559440896 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..10.

FORMULA

G.f. A(x) satisfies: a(n+1) = [x^n] A(x)^(4^n) for n>=0, with a(0)=1.

EXAMPLE

G.f.: A(x) = 1 + x + 4*x^2 + 184*x^3 + 69568*x^4 + 238298048*x^5 +...

SERIES REPRESENTATION:

A(x) = 1 + x*[1 + log(A(4x)) + log(A(16x))^2/2! + log(A(64x))^3/3! +...+ log(A(4^n*x))^n/n! +...].

...

GENERATED BY POWERS OF G.F.:

a(n+1) equals the coefficient of x^n in A(x)^(4^n) for n>=0;

the coefficients of A(x)^(4^n) begin:

A^(4^0): [(1), 1, 4, 184, 69568, 238298048, 10444630574080, ...];

A^(4^1): [1, (4), 22, 788, 280625, 954038256, 41781386268864, ...];

A^(4^2): [1, 16, (184), 4464, 1167708, 3830011216, 167171472557448, ...];

A^(4^3): [1, 64, 2272, (69568), 6361840, 15577329728, 669428002912672, ...];

A^(4^4): [1, 256, 33664, 3071744, (238298048), 78858088704, ...];

A^(4^5): [1, 1024, 527872, 182811648, 47958593280, (10444630574080), ...];

In the above table, the diagonal forms this sequence shift left.

PROG

(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, Vec(Ser(A)^(4^(#A-1)))[ #A])); A[n+1]}

CROSSREFS

Cf. A132695, A156904.

Sequence in context: A024266 A174772 A146549 * A202631 A102194 A102191

Adjacent sequences:  A156902 A156903 A156904 * A156906 A156907 A156908

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 2 21:48 EDT 2022. Contains 355029 sequences. (Running on oeis4.)