login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156904
G.f. A(x) satisfies: A(x) = 1 + x*Sum_{n>=0} log( A(3^n*x) )^n / n!.
3
1, 1, 3, 63, 6732, 3414312, 10221878106, 243813944182248, 50538758405328815616, 87376772859536771916909012, 1235009698863206337006094872463887, 142641072494398006081741872595533545306244
OFFSET
0,3
FORMULA
G.f. A(x) satisfies: a(n+1) = [x^n] A(x)^(3^n) for n>=0, with a(0)=1.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 63*x^3 + 6732*x^4 + 3414312*x^5 +...
SERIES REPRESENTATION:
A(x) = 1 + x*[1 + log(A(3x)) + log(A(9x))^2/2! + log(A(27x))^3/3! +...+ log(A(3^n*x))^n/n! +...].
...
GENERATED BY POWERS OF G.F.:
a(n+1) equals the coefficient of x^n in A(x)^(3^n) for n>=0;
the coefficients of A(x)^(3^n) begin:
A^(3^0): [(1), 1, 3, 63, 6732, 3414312, 10221878106, ...];
A^(3^1): [1, (3), 12, 208, 20610, 10284678, 30686274630, ...];
A^(3^2): [1, 9, (63), 867, 66330, 31246902, 92246164932, ...];
A^(3^3): [1, 27, 432, (6732), 273024, 97968096, 278472473082, ...];
A^(3^4): [1, 81, 3483, 109863, (3414312), 385422948, 853280745822, ...];
A^(3^5): [1, 243, 30132, 2553768, 168586110, (10221878106), ...];
In the above table, the diagonal forms this sequence shift left.
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, Vec(Ser(A)^(3^(#A-1)))[ #A])); A[n+1]}
CROSSREFS
Sequence in context: A123687 A159605 A180761 * A193100 A053857 A175985
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 04 2009
STATUS
approved