|
EXAMPLE
|
G.f.: A(x) = 1 + x + 3*x^2 + 63*x^3 + 6732*x^4 + 3414312*x^5 +...
SERIES REPRESENTATION:
A(x) = 1 + x*[1 + log(A(3x)) + log(A(9x))^2/2! + log(A(27x))^3/3! +...+ log(A(3^n*x))^n/n! +...].
...
GENERATED BY POWERS OF G.F.:
a(n+1) equals the coefficient of x^n in A(x)^(3^n) for n>=0;
the coefficients of A(x)^(3^n) begin:
A^(3^0): [(1), 1, 3, 63, 6732, 3414312, 10221878106, ...];
A^(3^1): [1, (3), 12, 208, 20610, 10284678, 30686274630, ...];
A^(3^2): [1, 9, (63), 867, 66330, 31246902, 92246164932, ...];
A^(3^3): [1, 27, 432, (6732), 273024, 97968096, 278472473082, ...];
A^(3^4): [1, 81, 3483, 109863, (3414312), 385422948, 853280745822, ...];
A^(3^5): [1, 243, 30132, 2553768, 168586110, (10221878106), ...];
In the above table, the diagonal forms this sequence shift left.
|