login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159605
E.g.f: Sum_{n>=1} a(n)*x^(2n-1)/(2n-1)! = Series_Reversion of e.g.f. S(x) of A159601.
1
1, 3, 63, 3465, 363825, 62214075, 15740160975, 5524796502225, 2569030373534625, 1528573072253101875, 1132672646539548489375, 1022803399825212285905625, 1105650475211054481063980625, 1409704355894094463356575296875
OFFSET
1,2
LINKS
FORMULA
a(n) = Product_{k=1..n} (2k-3)(4k-5).
a(n) ~ Gamma(1/4) * 2^(3*n - 5/2) * n^(2*n - 7/4) / (sqrt(Pi) * exp(2*n)). - Vaclav Kotesovec, Nov 19 2023
EXAMPLE
E.g.f.: A(x) = x + 3*x^3/3! + 63*x^5/5! + 3465*x^7/7! +...
A(S(x)) = x where S(x) = Sum_{n>=1} A159601(n)*x^(2n-1)/(2n-1)! :
S(x) = x - 3*x^3/3! + 27*x^5/5! - 441*x^7/7! + 11529*x^9/9! +...
MATHEMATICA
Table[Product[(2k-3)(4k-5), {k, n}], {n, 15}] (* Harvey P. Dale, Jan 31 2023 *)
PROG
(PARI) a(n)=prod(k=1, n, (2*k-3)*(4*k-5))
CROSSREFS
Cf. A159601.
Sequence in context: A331012 A369955 A123687 * A180761 A156904 A193100
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 11 2009
STATUS
approved