login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369955
a(n) is the least integer m such that the sum of the digits of m^2 is 9*(k+n) where k is the number of digits of m.
2
3, 63, 3114, 8937, 94863, 5477133, 82395381, 706399164, 9380293167, 99497231067, 4472135831667, 62441868958167, 836594274358167, 9983486364492063, 435866837461509417, 707106074079263583, 77453069648658793167, 754718284918279954614, 8882505274864168010583
OFFSET
0,1
COMMENTS
3|a(n).
EXAMPLE
a(2)=3114 because 3114 is the least 4-digit integer whose square has digit sum 9*(4+2) = 9*6 = 54: 3114^2 = 9696996 and 9+6+9+6+9+9+6 = 54.
MATHEMATICA
n=0; For[k=0, k<10^8/3, k++, If[Total[IntegerDigits[9k^2]]==9*(n+Ceiling@Log10@(3k)), Print[{n, 3k}]; n++]]
PROG
(Python)
def sd(n):
return sum(int(d) for d in str(n*n))
n=0
for k in range(0, 10**8, 3):
if sd(k)==9*(len(str(k))+n):
print([n, k])
n+=1
(PARI) a(n) = my(m=1); while (sumdigits(m^2) != 9*(#Str(m)+n), m++); m; \\ Michel Marcus, Feb 10 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Zhining Yang, Feb 06 2024
EXTENSIONS
a(9)-a(18) from Zhao Hui Du, Feb 19 2024
STATUS
approved