login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369953
a(n) is the least integer k such that the sum of the digits of k^2 is 9*n.
3
0, 3, 24, 63, 264, 1374, 3114, 8937, 60663, 94863, 545793, 1989417, 5477133, 20736417, 82395387, 260191833, 706399164, 2428989417, 9380293167, 28105157886, 99497231067, 538479339417, 1974763271886, 4472135831667, 14106593458167, 62441868958167, 244744764757083, 836594274358167
OFFSET
0,2
COMMENTS
3|a(n).
LINKS
Zhining Yang, Table of n, a(n) for n = 0..40 (terms 19..40 from Zhao Hui Du)
FORMULA
a(n) = A067179(4n).
EXAMPLE
a(3)=63 because k=63 is the least integer k such that the sum of the digits of k^2 = 3969 is 9*3 = 27 (3+9+6+9 = 27).
MATHEMATICA
n=1; lst={}; For[k=0, k<10^8, k+=3, If[Total[IntegerDigits[k^2]]==9*n, AppendTo[lst, k]; n++]]; lst
PROG
(Python)
n=1
lst=[]
for k in range(0, 10**8, 3):
if sum(int(d) for d in str(k*k))==9*n:
lst.append(k)
n=n+1
print(lst)
(PARI) a(n) = my(k=0); while(sumdigits(k^2) != 9*n, k+=3); k; \\ Michel Marcus, Feb 17 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Zhining Yang, Feb 06 2024
EXTENSIONS
a(19)-a(27) from Zhao Hui Du, Feb 09 2024
STATUS
approved