OFFSET
1,3
COMMENTS
FORMULA
T(n,k) = Sum_{i=1..k} (1/i!)*Sum_{j=0..i} Stirling1(i+1, j+1)*(2^j-1)^n.
T(n,k) = Sum_{i=1..k} Sum_{j=0..n} (-1)^j*C(n, j)*C(2^(n-j)-1, i).
T(n,2^n-1) = A003465(n).
EXAMPLE
Triangle (with rows n >= 1 and columns k >= 1) begins as follows:
1;
1, 4, 5;
1, 13, 45, 80, 101, 108, 109;
1, 40, 361, 1586, 4505, 9482, 15913, 22348, 27353, 30356, 31721, 32176, 32281, 32296, 32297;
...
There are T(3,2) = 13 covers of [3] consisting of up to 2 subsets (brackets and commas omitted):
123
123 1
123 2
123 3
123 12
123 13
123 23
12 13
12 23
13 23
12 3
13 2
23 1
MATHEMATICA
Flatten[Table[Sum[Sum[StirlingS1[i+1, j+1] (2^j-1)^n, {j, 0, i}]/i!, {i, k}], {n, 6}, {k, 2^n-1}]]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Manfred Boergens, Feb 12 2024
STATUS
approved