Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #73 Feb 20 2024 10:40:10
%S 0,3,24,63,264,1374,3114,8937,60663,94863,545793,1989417,5477133,
%T 20736417,82395387,260191833,706399164,2428989417,9380293167,
%U 28105157886,99497231067,538479339417,1974763271886,4472135831667,14106593458167,62441868958167,244744764757083,836594274358167
%N a(n) is the least integer k such that the sum of the digits of k^2 is 9*n.
%C 3|a(n).
%H Zhining Yang, <a href="/A369953/b369953.txt">Table of n, a(n) for n = 0..40</a> (terms 19..40 from Zhao Hui Du)
%H Shouen Wang, <a href="http://bbs.mathchina.com/bbs/forum.php?mod=viewthread&tid=2060076">Chinese BBS: How many of these A's are there?</a>
%F a(n) = A067179(4n).
%e a(3)=63 because k=63 is the least integer k such that the sum of the digits of k^2 = 3969 is 9*3 = 27 (3+9+6+9 = 27).
%t n=1;lst={};For[k=0,k<10^8,k+=3,If[Total[IntegerDigits[k^2]]==9*n,AppendTo[lst,k];n++]];lst
%o (Python)
%o n=1
%o lst=[]
%o for k in range(0,10**8,3):
%o if sum(int(d) for d in str(k*k))==9*n:
%o lst.append(k)
%o n=n+1
%o print(lst)
%o (PARI) a(n) = my(k=0); while(sumdigits(k^2) != 9*n, k+=3); k; \\ _Michel Marcus_, Feb 17 2024
%Y Cf. A004159, A008591, A067179, A369955.
%K nonn,base
%O 0,2
%A _Zhining Yang_, Feb 06 2024
%E a(19)-a(27) from _Zhao Hui Du_, Feb 09 2024