login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f: Sum_{n>=1} a(n)*x^(2n-1)/(2n-1)! = Series_Reversion of e.g.f. S(x) of A159601.
1

%I #8 Nov 19 2023 06:54:54

%S 1,3,63,3465,363825,62214075,15740160975,5524796502225,

%T 2569030373534625,1528573072253101875,1132672646539548489375,

%U 1022803399825212285905625,1105650475211054481063980625,1409704355894094463356575296875

%N E.g.f: Sum_{n>=1} a(n)*x^(2n-1)/(2n-1)! = Series_Reversion of e.g.f. S(x) of A159601.

%H Harvey P. Dale, <a href="/A159605/b159605.txt">Table of n, a(n) for n = 1..213</a>

%F a(n) = Product_{k=1..n} (2k-3)(4k-5).

%F a(n) ~ Gamma(1/4) * 2^(3*n - 5/2) * n^(2*n - 7/4) / (sqrt(Pi) * exp(2*n)). - _Vaclav Kotesovec_, Nov 19 2023

%e E.g.f.: A(x) = x + 3*x^3/3! + 63*x^5/5! + 3465*x^7/7! +...

%e A(S(x)) = x where S(x) = Sum_{n>=1} A159601(n)*x^(2n-1)/(2n-1)! :

%e S(x) = x - 3*x^3/3! + 27*x^5/5! - 441*x^7/7! + 11529*x^9/9! +...

%t Table[Product[(2k-3)(4k-5),{k,n}],{n,15}] (* _Harvey P. Dale_, Jan 31 2023 *)

%o (PARI) a(n)=prod(k=1,n,(2*k-3)*(4*k-5))

%Y Cf. A159601.

%K nonn

%O 1,2

%A _Paul D. Hanna_, May 11 2009