login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156906
Transform of Fibonacci(n+1) with Hankel transform (-1)^binomial(n+1,2) * Fibonacci(n+1).
1
1, 0, 1, -1, 0, 0, 2, -2, -3, 3, 11, -11, -31, 31, 101, -101, -328, 328, 1102, -1102, -3760, 3760, 13036, -13036, -45750, 45750, 162262, -162262, -580638, 580638, 2093802, -2093802, -7601043, 7601043, 27756627, -27756627, -101888163
OFFSET
0,7
COMMENTS
Hankel transform is (-1)^binomial(n+1,2) * Fibonacci(n+1).
Image of Fibonacci(n+1) by the Riordan array (1/(1 + x*c(-x^2)), x*c(-x^2)/(1 + x*c(-x^2))) = (1/(1-x), x*(1-x)/(1-2*x))^{-1} = A055587^{-1}.
LINKS
FORMULA
G.f.: (1 + 2*x + sqrt(1+4*x^2))/(2*(1+x)) = 1 + x^2*c(-x^2)/(1+x) where c(x) is the g.f. of A000108;
G.f.: 1/(1 -x^2/(1 + x + 2*x^2/(1 - x/2 + 3*x^2/4/(1 + x/6 + 10*x^2/9/(1 -x/15 + 24/25*x^2/(1 + ... (continued fraction);
In the continued fraction expansion of the g.f. the general term is 1 + x*if(n=0, 0, (-1)^n/(Fibonacci(n)*Fibonacci(n+1)) + x^2*(-0^n + Fibonacci(n)*Fibonacci(n+2) )/Fibonacci(n+1)^2.
a(n) = Sum_{k=0..n} (-1)^(n-k)*b(k), where b(n) = binomial(1,n) -A000108((n-2)/2) * (-1)^(n/2) * (1+(-1)^n)/2 and b(0) = 1.
n*a(n) = -n*a(n-1) -4*(n-3)*a(n-2) -4*(n-3)*a(n-3). - R. J. Mathar, Nov 14 2011
a(n) = (1/2)*( 2*[n=0] - (-1)^n + Sum_{j=0..floor(n/2)} (-1)^(n+j+1)*binomial(2*j, j)/(2*j-1) ). - G. C. Greubel, Jun 14 2021
MAPLE
cx := (1-sqrt(1-4*x))/2/x ;
A156906 := proc(n)
1+x^2*subs(x=-x^2, cx)/(1+x) ;
coeftayl(%, x=0, n) ;
end proc:
seq(A156906(n), n=0..40); # R. J. Mathar, Jul 28 2016
MATHEMATICA
a[n_]:= (1/2)*(2*Boole[n==0] -(-1)^n + Sum[(-1)^(n+j+1)*Binomial[2*j, j]/(2*j-1), {j, 0, Floor[n/2]}]); Table[a[n], {n, 0, 60}] (* G. C. Greubel, Jun 14 2021 *)
PROG
(Sage)
def A156906(n): return (1/2)*( 2*bool(n==0) - (-1)^n + sum( (-1)^(n+j+1)*binomial( 2*j, j)/(2*j-1) for j in (0..n//2)) )
[A156906(n) for n in (0..40)] # G. C. Greubel, Jun 14 2021
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Feb 17 2009
STATUS
approved