Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:45:51
%S 1,25,1249,62425,3120001,155937625,7793761249,389532124825,
%T 19468812480001,973051091875225,48633085781281249,2430681237972187225,
%U 121485428812828080001,6071840759403431812825,303470552541358762561249
%N x-values in the solution to x^2-39*y^2=1.
%C The corresponding values of y of this Pell equation are in A174776.
%H Vincenzo Librandi, <a href="/A174751/b174751.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (50,-1).
%F a(n) = 50*a(n-1)-a(n-2) with a(1)=1, a(2)=25.
%F G.f.: x*(1-25*x)/(1-50*x+x^2).
%t LinearRecurrence[{50,-1},{1,25},30]
%t Rest[CoefficientList[Series[x (1-25x)/(1-50x+x^2),{x,0,20}],x]] (* _Harvey P. Dale_, Aug 10 2021 *)
%o (Magma) I:=[1, 25]; [n le 2 select I[n] else 50*Self(n-1)-Self(n-2): n in [1..20]];
%Y Cf. A174776.
%K nonn,easy
%O 1,2
%A _Vincenzo Librandi_, Apr 13 2010