|
|
A174753
|
|
x-values in the solution to x^2-43*y^2=1.
|
|
2
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The corresponding values of y of this Pell equation are in A174780.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (6964,-1).
|
|
FORMULA
|
a(n) = 6964*a(n-1)-a(n-2) with a(1)=1, a(2)=3482.
G.f.: x*(1-3482*x)/(1-6964*x+x^2).
|
|
MATHEMATICA
|
LinearRecurrence[{6964, -1}, {1, 3482}, 30]
|
|
PROG
|
(Magma) I:=[1, 3482]; [n le 2 select I[n] else 6964*Self(n-1)-Self(n-2): n in [1..20]];
|
|
CROSSREFS
|
Cf. A174780.
Sequence in context: A159215 A176380 A156773 * A031557 A031737 A268156
Adjacent sequences: A174750 A174751 A174752 * A174754 A174755 A174756
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, Apr 13 2010
|
|
STATUS
|
approved
|
|
|
|