login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008765
Expansion of (1+x^4)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
1
1, 1, 2, 3, 6, 7, 11, 14, 20, 24, 32, 38, 49, 57, 70, 81, 98, 111, 131, 148, 172, 192, 220, 244, 277, 305, 342, 375, 418, 455, 503, 546, 600, 648, 708, 762, 829, 889, 962, 1029, 1110, 1183, 1271, 1352, 1448, 1536, 1640, 1736, 1849, 1953, 2074, 2187, 2318, 2439, 2579, 2710, 2860, 3000
OFFSET
0,3
MAPLE
seq(coeff(series((1+x^4)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019
MATHEMATICA
LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {1, 1, 2, 3, 6, 7, 11, 14, 20, 24}, 60] (* G. C. Greubel, Sep 10 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^4)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))) \\ G. C. Greubel, Sep 10 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^4)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019
(Sage)
def A008765_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^4)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
A008765_list(60) # G. C. Greubel, Sep 10 2019
(GAP) a:=[1, 1, 2, 3, 6, 7, 11, 14, 20, 24];; for n in [11..60] do a[n]:=a[n-1] +a[n-2]-2*a[n-5]+a[n-8]+a[n-9]-a[n-10]; od; a; # G. C. Greubel, Sep 10 2019
CROSSREFS
Sequence in context: A002256 A230584 A294176 * A018468 A117115 A308733
KEYWORD
nonn
EXTENSIONS
Terms a(44) onward added by G. C. Greubel, Sep 10 2019
STATUS
approved