OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1,-1,1,-1,2,-1).
FORMULA
Expansion of (1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) = (1-x+x^2)/( (1+x)*(1+x+x^2)*(1+x^2)*(1-x)^4).
EXAMPLE
There are 6 nonisomorphic symmetric 3 X 3 matrices with row and column sums 4:
[0 0 4] [0 1 3] [0 1 3] [0 2 2] [0 2 2] [1 1 2]
[0 4 0] [1 2 1] [1 3 0] [2 0 2] [2 1 1] [1 2 1]
[4 0 0] [3 1 0] [3 0 1] [2 2 0] [2 1 1] [2 1 1]
MAPLE
seq(coeff(series((1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019
MATHEMATICA
LinearRecurrence[{2, -1, 1, -1, -1, 1, -1, 2, -1}, {1, 1, 2, 4, 6, 8, 12, 16, 21}, 60] (* G. C. Greubel, Sep 10 2019 *)
PROG
(PARI) my(x='x+O('x^60)); Vec((1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))) \\ G. C. Greubel, Sep 10 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019
(Sage)
def A008764_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
A008764_list(60) # G. C. Greubel, Sep 10 2019
(GAP) a:=[1, 1, 2, 4, 6, 8, 12, 16, 21];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; a; # G. C. Greubel, Sep 10 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Better description and more terms from Vladeta Jovovic, Feb 06 2000
STATUS
approved