The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230584 Either two less than a square or two more than a square. 4
 2, 3, 6, 7, 11, 14, 18, 23, 27, 34, 38, 47, 51, 62, 66, 79, 83, 98, 102, 119, 123, 142, 146, 167, 171, 194, 198, 223, 227, 254, 258, 287, 291, 322, 326, 359, 363, 398, 402, 439, 443, 482, 486, 527, 531, 574, 578, 623, 627, 674, 678, 727, 731, 782, 786, 839, 843, 898, 902, 959, 963 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers n such that the polynomial x^4 - n*x^2 + 1 is reducible. The corresponding factorizations are (x^2 + k*x - 1)*(x^2 - k*x - 1) == x^4 - (k^2 + 2)*x^2 + 1 and (x^2 + k*x + 1)*(x^2 - k*x + 1) == x^4 - (k^2 - 2)*x^2 + 1. - Joerg Arndt, Feb 07 2015 Union of A008865 and A059100. For k > 1: a(2*k+1) - a(2*k) = 4 and a(2*k) - a(2*k-1) = k - 1; for n > 4: a(n) - a(n-2) = 2*floor(n/2) + 1 = A109613(n). - Reinhard Zumkeller, Feb 10 2015 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA From Colin Barker, Oct 24 2013: (Start)   a(n) = (5-13*(-1)^n+2*(3+(-1)^n)*n+2*n^2)/8 for n>2.   a(n) = (n^2+4*n-4)/4 for n>2 and even.   a(n) = (n^2+2*n+9)/4 for n>2 and odd.   a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>7.   G.f.: x*(x^6-2*x^5+x^3+x^2-x-2) / ((x-1)^3*(x+1)^2). (End) After the first two terms 0^2+2 = 2^2-2, 1^2+2, the squares are sufficiently spaced to ensure that the sequence continues 2^2+2, 3^2-2, 3^2+2, 4^2-2, 4^2+2,..., i.e., a(2n-1) = n^2+2, a(2n)=(n+1)^2-2. - M. F. Hasler, Oct 26 2013 PROG (PARI) is(n)=issquare(n-2)||issquare(n+2) (PARI) A230584_vec(N)=Vec((2+x-x^2-x^3+2*x^5-x^6)/((1-x)^3*(1+x)^2)+O(x^N)) \\ M. F. Hasler, Oct 26 2013 (Haskell) import Data.List (transpose) a230584 n = a230584_list !! (n-1) a230584_list = 2 : 3 : concat                (transpose [drop 2 a059100_list, drop 2 a008865_list]) -- Reinhard Zumkeller, Feb 10 2015 CROSSREFS Cf. A008865, A059100, A000290, A109613. Sequence in context: A269983 A323066 A002256 * A294176 A008765 A018468 Adjacent sequences:  A230581 A230582 A230583 * A230585 A230586 A230587 KEYWORD nonn,easy AUTHOR Ralf Stephan, Oct 24 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 24 10:26 EST 2020. Contains 338612 sequences. (Running on oeis4.)