login
A230583
a(n) = floor(s(n) - n*(log(n) + 2*Gamma - 1)), where s(n) = sum_{k=1..n} tau(k), where tau(k) is the number of divisors of k.
1
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0, 3, 1, 1, 2, 3, 1, 3, 1, 2, 2, 2, 0, 4, 2, 2, 1, 3, 0, 4, 1, 3, 2, 1, 1, 5, 2, 1, 1, 4, 1, 4, 1, 2, 3, 2, -1, 4, 2, 3, 2, 3, 0, 3, 2, 4, 3, 2, -1, 6, 2, 1, 2, 3, 2, 5, 1, 2, 1, 3, 0, 6, 3, 2, 2, 3, 1, 4, 0, 5, 4, 2, -1, 5, 4, 2
OFFSET
1,6
COMMENTS
Dirichlet proved this sequence is O(n^1/2).
FORMULA
a(n) = Sum(A000005(k), k=1..n) - n*(log(n) + 0.1544313298), where the decimal is (approximately) 2*Gamma-1.
MATHEMATICA
s = 0; Table[s = s + DivisorSigma[0, n]; Floor[s - n*(Log[n] + 2*EulerGamma - 1)], {n, 100}] (* T. D. Noe, Nov 04 2013 *)
PROG
(JavaScript)
function sigma(n, k) {
var j, s, sn;
s=0;
sn=Math.sqrt(n);
for (j=1; j<sn; j++) if (n%j==0) s+=Math.pow(j, k)+Math.pow(n/j, k);
if (n%sn==0) s+=Math.pow(sn, k);
return s;
}
c=0;
for (i=1; i<100; i++) {
c+=sigma(i, 0);
document.write(Math.floor(c-i*(Math.log(i)+0.1544313298))+", ");
}
CROSSREFS
KEYWORD
sign
AUTHOR
Jon Perry, Oct 24 2013
STATUS
approved