Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 08 2022 08:44:36
%S 1,1,2,3,5,6,9,12,16,20,26,32,40,48,58,69,82,95,111,128,147,167,190,
%T 214,241,269,300,333,369,406,447,490,536,584,636,690,748,808,872,939,
%U 1010,1083,1161,1242,1327,1415,1508,1604,1705,1809,1918,2031,2149,2270
%N Expansion of (1+x^7)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
%H G. C. Greubel, <a href="/A008768/b008768.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-1,-1,1,-1,2,-1).
%F a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) - a(n-5) + a(n-6) - a(n-7) + 2*a(n-8) - a(n-9); a(0)=1, a(1)=1, a(2)=2, a(3)=3, a(4)=5, a(5)=6, a(6)=9, a(7)=12, a(8)=16. - _Harvey P. Dale_, Jul 06 2011
%F a(n) = floor((2*n^3 + 9*n^2 + 72*n + 160)/144). - _Tani Akinari_, May 13 2014
%p seq(coeff(series((1+x^7)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # _G. C. Greubel_, Sep 10 2019
%t CoefficientList[Series[(1+x^7)/(1-x)/(1-x^2)/(1-x^3)/(1-x^4), {x,0,50}], x] (* or *) LinearRecurrence[{2,-1,1,-1,-1,1,-1,2,-1}, {1,1,2,3,5,6,9, 12,16}, 50] (* _Harvey P. Dale_, Jul 06 2011 *)
%o (PARI) my(x='x+O('x^60)); Vec((1+x^7)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))) \\ _G. C. Greubel_, Sep 10 2019
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^7)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // _G. C. Greubel_, Sep 10 2019
%o (Sage)
%o def A008768_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P((1+x^7)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list()
%o A008768_list(60) # _G. C. Greubel_, Sep 10 2019
%o (GAP) a:=[1,1,2,3,5,6,9,12,16];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; a; # _G. C. Greubel_, Sep 10 2019
%K nonn
%O 0,3
%A _N. J. A. Sloane_