login
A280369
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 259", based on the 5-celled von Neumann neighborhood.
4
1, 1, 3, 8, 3, 56, 3, 248, 3, 1016, 3, 4088, 3, 16376, 3, 65528, 3, 262136, 3, 1048568, 3, 4194296, 3, 16777208, 3, 67108856, 3, 268435448, 3, 1073741816, 3, 4294967288, 3, 17179869176, 3, 68719476728, 3, 274877906936, 3, 1099511627768, 3, 4398046511096, 3
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Jan 01 2017: (Start)
a(n) = 3 for n>1 and even.
a(n) = 2^(n+1) - 8 for n>1 and odd.
a(n) = 5*a(n-2) - 4*a(n-4) for n>5.
G.f.: (1 + x - 2*x^2 + 3*x^3 - 8*x^4 + 20*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 259; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 01 2017
STATUS
approved