login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A168408
E.g.f.: Sum_{n>=0} (exp(3^n*x) - 1)^n/n!, an analog of the Bell numbers (A000110).
4
1, 3, 90, 21897, 46281375, 882516062106, 153201395082609531, 241604140428719375972139, 3448358784659838019970862469260, 444238039567848645977924129826080612043
OFFSET
0,2
FORMULA
a(n) = exp(-3^n)*Sum_{k>=0} (3^k*k)^n/k!.
a(n) = [x^n/n! ] Bell(x)^(3^n) where Bell(x) = exp(exp(x) - 1) is the e.g.f. of the Bell numbers.
a(n) = Sum_{k=0..n} S2(n,k)*3^(n*k), where S2(n,k) = A008277(n,k) are the Stirling numbers of the second kind.
G.f.: A(x) = Sum_{n>=0} 3^(n^2)*x^n/[Product_{k=1..n} (1-k*3^n*x)].
EXAMPLE
E.g.f.: A(x) = 1 + 3*x + 90*x^2/2! + 21897*x^3/3! + 46281375*x^4/4! +...
A(x) = 1 + (exp(3*x) - 1) + (exp(9*x) - 1)^2/2! + (exp(27*x) - 1)^3/3! +...+ (exp(3^n*x) - 1)^n/n! +...
a(n) = coefficient of x^n/n! in Bell(x)^(3^n) where Bell(x) = exp(exp(x)-1):
Bell(x) = 1 + x + 2*x^2/2! + 5*x^3/3! + 15*x^4/4! + 52*x^5/5! + 203*x^6/6! +...+ A000110(n)*x^n/n! +...
PROG
(PARI) {a(n)=local(infnty=n^5+10); round(exp(-3^n)*sum(k=0, infnty, (3^k*k)^n/k!))}
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, (exp(3^k*x +x*O(x^n))-1)^k/k!), n)}
(PARI) {a(n)=n!*polcoeff(exp(3^n*(exp(x +x*O(x^n))-1)), n)}
(PARI) {S2(n, k)=(1/k!)*sum(i=0, k, (-1)^(k-i)*binomial(k, i)*i^n)}
{a(n)=sum(k=0, n, S2(n, k)*3^(n*k))} \\ Paul D. Hanna, Feb 15 2010
(PARI) {a(n)=polcoeff(sum(k=0, n, (3^k*x)^k/prod(j=1, k, 1-j*3^k*x+x*O(x^n))), n)}
CROSSREFS
Cf. A008277.
Sequence in context: A376777 A166334 A209495 * A132556 A053996 A218143
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 25 2009, Feb 16 2010
STATUS
approved