The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168406 E.g.f.: Sum_{n>=0} arctan(2^n*x)^n/n!. 2
 1, 2, 16, 496, 63488, 32899840, 68049141760, 560546415810560, 18415229458563727360, 2416302337337071616327680, 1267360474688679165942982246400, 2658246833688954938616062542151680000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n) = [x^n/n!] exp(2^n*arctan(x)) for n >= 0. EXAMPLE E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 496*x^3/3! + 63488*x^4/4! + ... A(x) = 1 + arctan(2*x) + arctan(4*x)^2/2! + arctan(8*x)^3/3! + arctan(16*x)^4/4! + ... + arctan(2^n*x)^n/n! + ... a(n) = coefficient of x^n/n! in G(x)^(2^n) where G(x) = exp(arctan(x)): G(x) = 1 + x + x^2/2! - x^3/3! - 7*x^4/4! + 5*x^5/5! + 145*x^6/6! + ... + A002019(n)*x^n/n! + ... PROG (PARI) {a(n)=n!*polcoeff(sum(k=0, n, atan(2^k*x +x*O(x^n))^k/k!), n)} (PARI) {a(n)=n!*polcoeff(exp(2^n*atan(x +x*O(x^n))), n)} CROSSREFS Cf. A002019 (exp(arctan x)), variants: A136632, A168402, A168403, A168404, A168405, A168407, A168408. Sequence in context: A012171 A068472 A168402 * A140310 A168403 A140311 Adjacent sequences:  A168403 A168404 A168405 * A168407 A168408 A168409 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 25 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 01:55 EST 2022. Contains 350654 sequences. (Running on oeis4.)