login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168404
E.g.f.: Sum_{n>=0} tan(2^n*x)^n/n!.
2
1, 2, 16, 528, 67584, 34210304, 69391122432, 565356426987520, 18478277930015260672, 2419401354886413876592640, 1267940756758206239694099841024, 2658665157828553829995392867121496064
OFFSET
0,2
FORMULA
a(n) = [x^n/n! ] exp(2^n*tan(x)) for n>=0.
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 528*x^3/3! + 67584*x^4/4! +...
A(x) = 1 + tan(2*x) + tan(4*x)^2/2! + tan(8*x)^3/3! + tan(16*x)^4/4! +...+ tan(2^n*x)^n/n! +...
a(n) = coefficient of x^n/n! in G(x)^(2^n) where G(x) = exp(tan(x)):
G(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 37*x^5/5! + 177*x^6/6! +...+ A006229(n)*x^n/n! +...
PROG
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, tan(2^k*x +x*O(x^n))^k/k!), n)}
(PARI) {a(n)=n!*polcoeff(exp(2^n*tan(x +x*O(x^n))), n)}
CROSSREFS
Cf. A006229 (exp(tan x)), variants: A136632, A168402, A168403, A168405, A168406, A168407, A168408.
Sequence in context: A168405 A012919 A012914 * A013087 A121271 A013136
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 25 2009
STATUS
approved