login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168403 E.g.f.: Sum_{n>=0} sin(2^n*x)^n/n!. 3
1, 2, 16, 504, 64512, 33226784, 68383997952, 561747553419136, 18430982918118572032, 2417076909966155927519744, 1267505531841541043488055885824, 2658351411163282144153185664555284480 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..11.

FORMULA

a(n) = [x^n/n! ] exp(2^n*sin(x)) for n>=0.

a(n) ~ 2^(n^2). - Vaclav Kotesovec, Oct 11 2020

EXAMPLE

E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 504*x^3/3! + 64512*x^4/4! +...

A(x) = 1 + sin(2*x) + sin(4*x)^2/2! + sin(8*x)^3/3! + sin(16*x)^4/4! +...+ sin(2^n*x)^n/n! +...

a(n) = coefficient of x^n/n! in G(x)^(2^n) where G(x) = exp(sin(x)):

G(x) = 1 + x + x^2/2! - 3*x^4/4! - 8*x^5/5! - 3*x^6/6! + 56*x^7/7! +...+ A002017(n)*x^n/n! +...

MATHEMATICA

nmax = 12; CoefficientList[Series[Sum[Sin[2^k*x]^k/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 11 2020 *)

PROG

(PARI) {a(n)=n!*polcoeff(sum(k=0, n, sin(2^k*x +x*O(x^n))^k/k!), n)}

(PARI) {a(n)=n!*polcoeff(exp(2^n*sin(x +x*O(x^n))), n)}

CROSSREFS

Cf. A002017 (exp(sin x)), variants: A168402, A136632.

Sequence in context: A168402 A168406 A140310 * A140311 A012389 A009710

Adjacent sequences: A168400 A168401 A168402 * A168404 A168405 A168406

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 25 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 17:06 EDT 2023. Contains 361528 sequences. (Running on oeis4.)