|
|
A168403
|
|
E.g.f.: Sum_{n>=0} sin(2^n*x)^n/n!.
|
|
3
|
|
|
1, 2, 16, 504, 64512, 33226784, 68383997952, 561747553419136, 18430982918118572032, 2417076909966155927519744, 1267505531841541043488055885824, 2658351411163282144153185664555284480
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..11.
|
|
FORMULA
|
a(n) = [x^n/n! ] exp(2^n*sin(x)) for n>=0.
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Oct 11 2020
|
|
EXAMPLE
|
E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 504*x^3/3! + 64512*x^4/4! +...
A(x) = 1 + sin(2*x) + sin(4*x)^2/2! + sin(8*x)^3/3! + sin(16*x)^4/4! +...+ sin(2^n*x)^n/n! +...
a(n) = coefficient of x^n/n! in G(x)^(2^n) where G(x) = exp(sin(x)):
G(x) = 1 + x + x^2/2! - 3*x^4/4! - 8*x^5/5! - 3*x^6/6! + 56*x^7/7! +...+ A002017(n)*x^n/n! +...
|
|
MATHEMATICA
|
nmax = 12; CoefficientList[Series[Sum[Sin[2^k*x]^k/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 11 2020 *)
|
|
PROG
|
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, sin(2^k*x +x*O(x^n))^k/k!), n)}
(PARI) {a(n)=n!*polcoeff(exp(2^n*sin(x +x*O(x^n))), n)}
|
|
CROSSREFS
|
Cf. A002017 (exp(sin x)), variants: A168402, A136632.
Sequence in context: A168402 A168406 A140310 * A140311 A012389 A009710
Adjacent sequences: A168400 A168401 A168402 * A168404 A168405 A168406
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul D. Hanna, Nov 25 2009
|
|
STATUS
|
approved
|
|
|
|