login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168402
E.g.f.: Sum_{n>=0} tanh(2^n*x)^n/n!.
4
1, 2, 16, 496, 63488, 32899584, 68048945152, 560546063546368, 18415227534711980032, 2416302301874471529480192, 1267360472364492854214927581184, 2658246833130441862918267501949222912
OFFSET
0,2
FORMULA
a(n) = [x^n/n! ] exp(2^n*tanh(x)).
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Oct 11 2020
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 496*x^3/3! + 63488*x^4/4! +...
A(x) = 1 + tanh(2*x) + tanh(4*x)^2/2! + tanh(8*x)^3/3! + tanh(16*x)^4/4! +...+ tanh(2^n*x)^n/n! +...
a(n) = coefficient of x^n/n! in G(x)^(2^n) where G(x) = exp(tanh(x)):
G(x) = 1 + x + x^2/2! - x^3/3! - 7*x^4/4! - 3*x^5/5! + 97*x^6/6! + 275*x^7/7! +...+ A003723(n)*x^n/n! +...
MATHEMATICA
nmax = 15; CoefficientList[Series[Sum[Tanh[2^k*x]^k/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 11 2020 *)
PROG
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, tanh(2^k*x +x*O(x^n))^k/k!), n)}
(PARI) {a(n)=n!*polcoeff(exp(2^n*tanh(x +x*O(x^n))), n)}
CROSSREFS
Cf. A003723 (exp(tanh x)), variant: A136632.
Sequence in context: A012458 A012171 A068472 * A168406 A140310 A168403
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 25 2009
EXTENSIONS
Example corrected by Paul D. Hanna, Nov 25 2009
STATUS
approved