login
A279305
T(n,k)=Number of nXk 0..2 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
6
0, 1, 1, 0, 0, 0, 3, 12, 12, 3, 6, 104, 498, 104, 6, 24, 872, 14908, 14908, 872, 24, 72, 8064, 396904, 1160588, 396904, 8064, 72, 232, 71680, 10073670, 85082276, 85082276, 10073670, 71680, 232, 720, 635312, 246262496, 6048938846, 17784685668
OFFSET
1,7
COMMENTS
Table starts
....0.......1..........0............3.............6............24
....1.......0.........12..........104...........872..........8064
....0......12........498........14908........396904......10073670
....3.....104......14908......1160588......85082276....6048938846
....6.....872.....396904.....85082276...17784685668.3593187600532
...24....8064...10073670...6048938846.3593187600532
...72...71680..246262496.417999641840
..232..635312.5863622944
..720.5554240
.2232
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 6*a(n-1) -6*a(n-2) -16*a(n-3) +12*a(n-4) +24*a(n-5) +8*a(n-6) for n>8
k=2: [order 15] for n>16
k=3: [order 51] for n>54
EXAMPLE
Some solutions for n=3 k=4
..0..0..1..1. .0..1..1..0. .0..1..1..1. .0..0..1..0. .0..1..1..0
..1..0..1..0. .2..1..1..2. .2..2..0..1. .1..1..0..0. .2..0..2..1
..2..2..0..1. .2..0..1..0. .1..0..0..2. .1..0..2..2. .0..0..0..2
CROSSREFS
Sequence in context: A182455 A110345 A018999 * A217785 A168410 A085272
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 09 2016
STATUS
approved