login
A002564
Number of different ways one can attack all squares on an n X n chessboard using the minimum number of queens.
(Formerly M3199 N1293)
6
1, 4, 1, 12, 186, 4, 86, 4860, 114, 8, 2, 8, 288, 4632, 205832, 2968, 124, 16, 84
OFFSET
1,2
COMMENTS
Number of distinct solutions to minimum dominating set on queens' graph Q(n). See A002563 for non-isomorphic solutions.
For same problem, but with non-attacking queens, see A002568. - Vaclav Kotesovec, Sep 07 2012
Number of minimum dominating sets in the n X n queen graph. - Eric W. Weisstein, Dec 31 2017
REFERENCES
W. Ahrens, Mathematische Unterhaltungen und Spiele, second edition (1910), Vol. 1, p. 301.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andy Huchala, Python program.
Matthew D. Kearse and Peter B. Gibbons, Computational Methods and New Results for Chessboard Problems, Australasian Journal of Combinatorics 23 (2001), 253-284.
M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49.
M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49. [Incomplete annotated scan of title page and pages 18-51]
Eric Weisstein's World of Mathematics, Minimum Dominating Set
Eric Weisstein's World of Mathematics, Queen Graph
CROSSREFS
A075458 gives number of queens required. - Sean A. Irvine, Apr 05 2014
Sequence in context: A157404 A135704 A373394 * A287640 A322078 A019428
KEYWORD
nonn,more
EXTENSIONS
New name of the sequence from Vaclav Kotesovec, Sep 07 2012
a(9)-a(10) from Vaclav Kotesovec, Sep 07 2012
a(11) from Svyatoslav Starkov, Sep 16 2013
a(12)-a(13) from Sean A. Irvine, Apr 07 2014
Definition edited by N. J. A. Sloane, Dec 25 2017 at the suggestion of Brendan McKay.
a(14) from Andy Huchala, Mar 13 2024
a(15)-a(19) from Mia Muessig, Oct 04 2024
STATUS
approved