login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002561
a(n) = n^5 + 1.
6
0, 1, 2, 33, 244, 1025, 3126, 7777, 16808, 32769, 59050, 100001, 161052, 248833, 371294, 537825, 759376, 1048577, 1419858, 1889569, 2476100, 3200001, 4084102, 5153633, 6436344, 7962625, 9765626, 11881377, 14348908, 17210369, 20511150, 24300001, 28629152, 33554433
OFFSET
-1,3
FORMULA
a(n) = A000584(n) + 1, for n >= 0.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), n > 4. - Harvey P. Dale, Aug 13 2013
G.f.: ( 1 - 4*x + 36*x^2 + 56*x^3 + 31*x^4 ) / (x-1)^6. - R. J. Mathar, Jul 28 2014
E.g.f.: (1 + x + 15*x^2 + 25*x^3 + 10*x^4 + x^5)*exp(x). - G. C. Greubel, Oct 24 2018
Sum_{n>=1} 1/a(n) = 1/2 + Sum_{n>=1} (-1)^(n+1) * (zeta(5*n) - 1) = 0.5359628431... - Amiram Eldar, Nov 06 2020
MATHEMATICA
Table[n^5+1, {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 2, 33, 244, 1025}, 40] (* Harvey P. Dale, Aug 13 2013 *)
PROG
(Magma) [n^5+1: n in [-1..30]]; // Vincenzo Librandi, Jun 07 2013
(PARI) a(n)=n^5+1 \\ Charles R Greathouse IV, Oct 07 2015
(GAP) List([1..30], n->n^5+1); # Muniru A Asiru, Oct 23 2018
(Sage) [n^5 + 1 for n in (-1..30)] # G. C. Greubel, Nov 20 2018
CROSSREFS
Cf. A000584.
Sequence in context: A362538 A006558 A228542 * A181547 A030448 A093992
KEYWORD
nonn,easy
STATUS
approved