|
|
A002561
|
|
a(n) = n^5 + 1.
|
|
6
|
|
|
0, 1, 2, 33, 244, 1025, 3126, 7777, 16808, 32769, 59050, 100001, 161052, 248833, 371294, 537825, 759376, 1048577, 1419858, 1889569, 2476100, 3200001, 4084102, 5153633, 6436344, 7962625, 9765626, 11881377
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
-1,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), n > 4. - Harvey P. Dale, Aug 13 2013
G.f.: ( 1 - 4*x + 36*x^2 + 56*x^3 + 31*x^4 ) / (x-1)^6. - R. J. Mathar, Jul 28 2014
E.g.f.: (1 + x + 15*x^2 + 25*x^3 + 10*x^4 + x^5)*exp(x). - G. C. Greubel, Oct 24 2018
Sum_{n>=1} 1/a(n) = 1/2 + Sum_{n>=1} (-1)^(n+1) * (zeta(5*n) - 1) = 0.5359628431... - Amiram Eldar, Nov 06 2020
|
|
MATHEMATICA
|
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 2, 33, 244, 1025}, 40] (* Harvey P. Dale, Aug 13 2013 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|