OFFSET
0,2
COMMENTS
The simple continued fraction expansion of 5*tan(1/5) begins [1; 73, 1, 3, 1, 173, 1, 7, 1, 273, 1, 11, 1, 373, 1, 15, 1, 473, 1, 19, 1, 573, ...], while the simple continued fraction expansion of (1/5)*tan(1/5) begins [0; 24, 1, 1, 1, 123, 1, 5, 1, 223, 1, 9, 1, 323, 1, 13, 1, 423, 1, 17, 1, 523, ...]. See my comment in A019425. - Peter Bala, Sep 30 2023
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..20000
G. Xiao, Contfrac
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
FORMULA
From Colin Barker, Sep 08 2013: (Start)
a(n) = (-1 + 3*(-1)^n - 5*(-1 + (-1)^n)*n)/2 for n > 1.
a(n) = 2*a(n-2) - a(n-4) for n > 5.
G.f.: x*(x^4-x^3+5*x^2+x+4) / ((x-1)^2*(x+1)^2). (End)
EXAMPLE
0.20271003550867248332135827... = 0 + 1/(4 + 1/(1 + 1/(13 + 1/(1 + ...)))). - Harry J. Smith, Jun 13 2009
MATHEMATICA
Join[{0, 4}, LinearRecurrence[{0, 2, 0, -1}, {1, 13, 1, 23}, 100]] (* Vincenzo Librandi, Jan 03 2016 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 93000); x=contfrac(tan(1/5)); for (n=0, 20000, write("b019428.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 13 2009
(PARI) Vec(x*(x^4-x^3+5*x^2+x+4)/((x-1)^2*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 08 2013
(Magma) [0, 4] cat [(-1+3*(-1)^n-5*(-1+(-1)^n)*n)/2: n in [2..80]]; // Vincenzo Librandi, Jan 03 2016
CROSSREFS
KEYWORD
nonn,cofr,easy
AUTHOR
STATUS
approved