login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094507
Triangle read by rows: T(n,k) is number of Dyck paths of semilength n and having k UDUD's (here U=(1,1), D=(1,-1)).
6
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 19, 14, 7, 1, 1, 53, 46, 22, 9, 1, 1, 153, 150, 82, 31, 11, 1, 1, 453, 495, 299, 127, 41, 13, 1, 1, 1367, 1651, 1087, 507, 181, 52, 15, 1, 1, 4191, 5539, 3967, 1991, 781, 244, 64, 17, 1, 1, 13015, 18692, 14442, 7824, 3271, 1128, 316, 77, 19
OFFSET
0,5
COMMENTS
Column k=0 is A078481.
Column k=1 is A244236.
Row sums are the Catalan numbers (A000108).
LINKS
A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
FORMULA
G.f.: G=G(t, z) satisfies the equation z(1+z-tz)G^2-(1+z+z^2-tz-tz^2)G+1+z-tz=0.
EXAMPLE
T(3,0) = 3 because UDUUDD, UUDDUD and UUUDDD are the only Dyck paths of semilength 3 and having no UDUD in them.
Triangle begins:
1;
1;
1, 1;
3, 1, 1;
7, 5, 1, 1;
19, 14, 7, 1, 1;
53, 46, 22, 9, 1, 1;
153, 150, 82, 31, 11, 1, 1;
453, 495, 299, 127, 41, 13, 1, 1;
1367, 1651, 1087, 507, 181, 52, 15, 1, 1;
4191, 5539, 3967, 1991, 781, 244, 64, 17, 1, 1;
MAPLE
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 2][t])
+b(x-1, y-1, [1, 3, 1, 3][t])*`if`(t=4, z, 1))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
seq(T(n), n=0..15); # Alois P. Heinz, Jun 02 2014
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, {2, 2, 4, 2}[[t]]] + b[x-1, y-1, {1, 3, 1, 3}[[t]]]*If[t == 4, z, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1] ]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A078481, A000108, A102405 (the same for DUDU), A243752, A243753, A244236.
T(2n,n) gives A304361.
Sequence in context: A118801 A080936 A343237 * A065625 A287213 A284631
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 05 2004
STATUS
approved