login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244236
Number of Dyck paths of semilength n having exactly one occurrence of the consecutive pattern UDUD.
3
0, 0, 1, 1, 5, 14, 46, 150, 495, 1651, 5539, 18692, 63356, 215556, 735717, 2517941, 8637881, 29693938, 102263818, 352762106, 1218634659, 4215351719, 14598518663, 50611799048, 175639493624, 610076726280, 2120837219465, 7378415912617, 25687819032237
OFFSET
0,5
LINKS
FORMULA
a(n) ~ c * (1/2+sqrt(2)+sqrt(5+4*sqrt(2))/2)^n / sqrt(n), where c = 0.0543819313385500572292392822783525275532509057751364636784836521... . - Vaclav Kotesovec, Jul 16 2014
MAPLE
a:= proc(n) option remember; `if`(n<5, [0$2, 1$2, 5][n+1],
((n-2)*(2*n-7)^2*a(n-1) +(28*n^3-212*n^2+501*n-361)*a(n-2)
+(28*n^3-208*n^2+481*n-344)*a(n-3) +(n-3)*(2*n-3)^2*a(n-4)
-(n-4)*(2*n-3)*(2*n-5)*a(n-5)) / ((n-1)*(2*n-5)*(2*n-7)))
end:
seq(a(n), n=0..30);
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[y < 0 || y > x, 0, If[x == 0, 1, Expand[ b[x - 1, y + 1, {2, 2, 4, 2}[[t]]] + b[x - 1, y - 1, {1, 3, 1, 3}[[t]]]* If[t == 4, z, 1]]]];
a[n_] := Coefficient[b[2 n, 0, 1], z, 1];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A094507 *)
CROSSREFS
Column k=1 of A094507 and column k=10 of A243827.
Sequence in context: A126729 A336006 A098730 * A163608 A081496 A152051
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 23 2014
STATUS
approved