login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244235
Number of Dyck paths of semilength n having exactly one occurrence of the consecutive pattern UDDU.
2
0, 0, 0, 1, 5, 17, 54, 177, 594, 1997, 6698, 22487, 75701, 255455, 863576, 2923806, 9913448, 33658109, 114417190, 389385699, 1326522885, 4523352061, 15437800028, 52730424194, 180244620903, 616546133055, 2110330086114, 7227665869122, 24768041790134
OFFSET
0,5
LINKS
FORMULA
a(n) ~ c * ((1+sqrt(13+16*sqrt(2)))/2)^n / sqrt(n), where c = 0.09016594515129336503624934471608236212385331150935643095582327... . - Vaclav Kotesovec, Jul 16 2014
EXAMPLE
a(3) = 1: UUDDUD.
a(4) = 5: UDUUDDUD, UUDDUDUD, UUDDUUDD, UUDUDDUD, UUUDDUDD.
MAPLE
a:= proc(n) option remember; `if`(n<4, binomial(n, 3),
(2*(n-1)*(112*n^5-1220*n^4+5251*n^3-11122*n^2+11566*n-4764)*a(n-1)
+(n-2)*(560*n^5-5820*n^4+23159*n^3-44070*n^2+40253*n-14010)*a(n-2)
-6*(n-2)*(n-3)*(112*n^4-884*n^3+2437*n^2-2436*n+486)*a(n-3)
+23*(n-2)*(n-3)*(n-4)*(112*n^3-492*n^2+623*n-267)*a(n-4)) /
(n*(n-1)*(n-3)*(112*n^3-828*n^2+1943*n-1494)))
end:
seq(a(n), n=0..30);
CROSSREFS
Column k=9 of A243827.
Sequence in context: A055419 A027091 A183712 * A081495 A191645 A146240
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 23 2014
STATUS
approved