|
|
A081496
|
|
Start with Pascal's triangle; a(n) is the sum of the numbers on the periphery of the n-th central rhombus containing exactly 4 numbers.
|
|
3
|
|
|
5, 14, 46, 160, 574, 2100, 7788, 29172, 110110, 418132, 1595620, 6113744, 23505356, 90633800, 350351640, 1357278300, 5268292830, 20483876820, 79765662900, 311038321440, 1214362277700, 4746455801880, 18570960418920, 72728638093800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (9*n-4)*Catalan(n-1) = (9*n-4)*binomial(2*(n-1), (n-1))/n. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
|
|
EXAMPLE
|
The first three rhombuses are
...1...........2.........6
.1...1.......3...3.....10..10
...2......,....6.....,...20
and the corresponding sums are a(1) =5, a(2) =14 and a(3) =46.
|
|
MAPLE
|
seq((9*n-4)*binomial(2*(n-1), (n-1))/n, n=1..26); # C. Ronaldo, Dec 20 2004
|
|
PROG
|
(PARI) { A029635(n, k) = if( k<0 || k>n, 0, (n==0) + binomial(n, k) + binomial(n-1, k-1))}; \\ program from Michael Somos in A029635
for(n=1, 30, print1(a(n), ", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
|
|
STATUS
|
approved
|
|
|
|