login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081499
Sum at 45 degrees to horizontal in triangle of A081498.
2
1, 2, 4, 6, 8, 11, 12, 16, 15, 20, 16, 22, 14, 21, 8, 16, -3, 6, -20, -10, -44, -33, -76, -64, -117, -104, -168, -154, -230, -215, -304, -288, -391, -374, -492, -474, -608, -589, -740, -720, -889, -868, -1056, -1034, -1242, -1219, -1448, -1424, -1675, -1650, -1924, -1898, -2196, -2169, -2492, -2464, -2813
OFFSET
1,2
COMMENTS
The leading diagonal is given by A080956(n) = ((n+1)(2-n)/2).
FORMULA
a(n) = (n+floor(n/2)+1)*(n-floor(n/2))/2-binomial(ceiling(n/2)+1, ceiling(n/2)-2). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
G.f.: x*(1 + x - x^2 - x^3 - x^4) / ((1 - x)^4*(1 + x)^3). - Colin Barker, Dec 18 2012
From Colin Barker, Nov 12 2017: (Start)
a(n) = (1/96)*(-2*n^3 + 36*n^2 + 32*n) for n even.
a(n) = (1/96)*(-2*n^3 + 30*n^2 + 50*n + 18) for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>7.
(End)
EXAMPLE
a(7) = 7+5+2+(-2) = 12.
MAPLE
seq((n+floor(n/2)+1)*(n-floor(n/2))/2-binomial(ceil(n/2)+1, ceil(n/2)-2), n=1..60); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
MATHEMATICA
LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {1, 2, 4, 6, 8, 11, 12}, 60] (* Harvey P. Dale, Jan 17 2022 *)
PROG
(PARI) Vec(x*(1 + x - x^2 - x^3 - x^4) / ((1 - x)^4*(1 + x)^3) + O(x^60)) \\ Colin Barker, Nov 12 2017
CROSSREFS
Sequence in context: A226722 A187414 A187348 * A342527 A117638 A128403
KEYWORD
sign,easy
AUTHOR
Amarnath Murthy, Mar 25 2003
EXTENSIONS
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
STATUS
approved