login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081498
Consider the triangle in which the n-th row starts with n, contains n terms and the difference of successive terms is 1,2,3,... up to n-1. Sequence gives row sums.
2
1, 3, 5, 6, 5, 1, -7, -20, -39, -65, -99, -142, -195, -259, -335, -424, -527, -645, -779, -930, -1099, -1287, -1495, -1724, -1975, -2249, -2547, -2870, -3219, -3595, -3999, -4432, -4895, -5389, -5915, -6474, -7067, -7695, -8359, -9060, -9799, -10577, -11395, -12254, -13155, -14099, -15087, -16120
OFFSET
1,2
COMMENTS
The triangle whose row sums are being considered is:
1;
2, 1;
3, 2, 0;
4, 3, 1, -2;
5, 4, 2, -1, -5;
6, 5, 3, 0, -4, -9;
7, 6, 4, 1, -3, -8, -14;
The leading diagonal is given by A080956(n-1) = n*(3-n)/2.
FORMULA
a(n) = n^2 - binomial(n+1, n-2). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
a(n) = binomial(n,2)+binomial(n,1)-binomial(n,3). - Zerinvary Lajos, Jul 23 2006
a(n) = n*(1+6*n-n^2)/6. - Karen A. Yeats, Nov 20 2006
From Michael Somos, Jul 04 2012: (Start)
G.f.: x * (1 - x - x^2) / (1 - x)^4.
a(-1 - n) = A008778(n). (End)
E.g.f.: x*(6 +3*x -x^2)*exp(x)/6. - G. C. Greubel, Mar 06 2019
EXAMPLE
G.f. = x * (1 + 3*x + 5*x^2 + 6*x^3 + 5*x^4 + x^5 - 7*x^6 - 20*x^7 - 39*x^8 - 65*x^9 + ...).
MAPLE
seq(n^2-binomial(n+1, n-2), n=1..50); # C. Ronaldo
[seq(binomial(n, 2)+binomial(n, 1)-binomial(n, 3), n=1..49)]; # Zerinvary Lajos, Jul 23 2006
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 3, 5, 6}, 50] (* G. C. Greubel, Mar 06 2019 *)
PROG
(PARI) {a(n) = if( n< 0, n = -2 - n; polcoeff( (1 + x - x^2) / (1 - x)^4 + x * O(x^n), n), polcoeff( (1 - x - x^2) / (1 - x)^4 + x * O(x^n), n))} /* Michael Somos, Jul 04 2012 */
(PARI) vector(50, n, n*(1+6*n-n^2)/6) \\ G. C. Greubel, Mar 06 2019
(GAP) List([1..50], n->n^2-Binomial(n+1, n-2)); # Muniru A Asiru, Mar 05 2019
(Magma) [n*(1+6*n-n^2)/6: n in [1..50]]; // G. C. Greubel, Mar 06 2019
(Sage) [n*(1+6*n-n^2)/6 for n in (1..50)] # G. C. Greubel, Mar 06 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Amarnath Murthy, Mar 25 2003
EXTENSIONS
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
Offset changed to 1 at the suggestion of Michel Marcus, Mar 05 2019
Formulas and programs addapted for offset 1 by Michel Marcus, Mar 05 2019
STATUS
approved