|
|
A081494
|
|
Start with Pascal's triangle; form a triangle by sliding down n steps from top on both sides and including the horizontal row, deleting the inner numbers; a(n) = sum of entries on perimeter of triangle.
|
|
4
|
|
|
1, 3, 7, 13, 23, 41, 75, 141, 271, 529, 1043, 2069, 4119, 8217, 16411, 32797, 65567, 131105, 262179, 524325, 1048615, 2097193, 4194347, 8388653, 16777263, 33554481, 67108915, 134217781, 268435511, 536870969, 1073741883, 2147483709
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
The triangle pertaining to n = 4 is obtained from the solid triangle
1
1 1
1 2 1
1 3 3 1
giving
1
1 1
1 1
1 3 3 1
and the sum of all the numbers is 13, so a(4) = 13.
|
|
MAPLE
|
restart:a:= proc(n) option remember; if n=0 then 1 else add((binomial (n, j)+2), j=0..n-1) fi end: seq (a(n), n=0..31); # Zerinvary Lajos, Mar 29 2009
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|