

A066624


Number of 1's in binary expansion of parts in all partitions of n.


2



0, 1, 3, 7, 13, 23, 41, 65, 102, 156, 234, 340, 495, 697, 982, 1359, 1864, 2523, 3408, 4536, 6022, 7918, 10365, 13457, 17423, 22380, 28666, 36498, 46318, 58466, 73617, 92221, 115236, 143402, 177984, 220086, 271524, 333810, 409490, 500804, 611149, 743728, 903296
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..8000


MAPLE

For n = 3: 11 = 10+1 = 1+1+1 [binary expansion of partitions of 3]. a(3) = (two 1's) + (two 1's) + (three 1's), so a(3) = 7.


MATHEMATICA

<< DiscreteMath`Combinatorica`; Table[Count[Flatten[IntegerDigits[Partitions[n], 2]], 1], {n, 0, 50}]


CROSSREFS

Cf. A000120, A000070.
Sequence in context: A306902 A227121 A078447 * A317783 A061761 A081494
Adjacent sequences: A066621 A066622 A066623 * A066625 A066626 A066627


KEYWORD

easy,nonn,base


AUTHOR

Naohiro Nomoto, Jan 09 2002


EXTENSIONS

More terms from Vladeta Jovovic and Robert G. Wilson v, Jan 11 2002


STATUS

approved



