login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081492
Sum of terms in n-th row of A081491.
4
1, 5, 18, 54, 135, 291, 560, 988, 1629, 2545, 3806, 5490, 7683, 10479, 13980, 18296, 23545, 29853, 37354, 46190, 56511, 68475, 82248, 98004, 115925, 136201, 159030, 184618, 213179, 244935, 280116, 318960, 361713, 408629, 459970, 516006, 577015
OFFSET
1,2
COMMENTS
For odd n a(n) is a multiple of n and a(n)/n is the middle term of the corresponding row.
FORMULA
a(n) = n*(2*n^3 - 6*n^2 + 13*n - 3)/6.
G.f.: x*(1+x)*(1-x+4*x^2)/(1-x)^5. - Colin Barker, Jul 28 2012
E.g.f.: x*(6 +9*x +6*x^2 +2*x^3)/6. - G. C. Greubel, Aug 13 2019
MAPLE
seq(n*(2*(n-1)^3+7*n-1)/6, n=1..40); # G. C. Greubel, Aug 13 2019
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 5, 18, 54, 135}, 40] (* Harvey P. Dale, Jul 01 2018 *)
PROG
(PARI) vector(40, n, n*(2*(n-1)^3+7*n-1)/6) \\ G. C. Greubel, Aug 13 2019
(Magma) [n*(2*(n-1)^3+7*n-1)/6: n in [1..40]]; // G. C. Greubel, Aug 13 2019
(Sage) [n*(2*(n-1)^3+7*n-1)/6 for n in (1..40)] # G. C. Greubel, Aug 13 2019
(GAP) List([1..40], n-> n*(2*(n-1)^3+7*n-1)/6); # G. C. Greubel, Aug 13 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Mar 25 2003
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 29 2003.
Formula corrected by Colin Barker, Jul 28 2012
STATUS
approved