|
|
A081492
|
|
Sum of terms in n-th row of A081491.
|
|
4
|
|
|
1, 5, 18, 54, 135, 291, 560, 988, 1629, 2545, 3806, 5490, 7683, 10479, 13980, 18296, 23545, 29853, 37354, 46190, 56511, 68475, 82248, 98004, 115925, 136201, 159030, 184618, 213179, 244935, 280116, 318960, 361713, 408629, 459970, 516006, 577015
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For odd n a(n) is a multiple of n and a(n)/n is the middle term of the corresponding row.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = n*(2*n^3 - 6*n^2 + 13*n - 3)/6.
G.f.: x*(1+x)*(1-x+4*x^2)/(1-x)^5. - Colin Barker, Jul 28 2012
|
|
MAPLE
|
seq(n*(2*(n-1)^3+7*n-1)/6, n=1..40); # G. C. Greubel, Aug 13 2019
|
|
MATHEMATICA
|
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 5, 18, 54, 135}, 40] (* Harvey P. Dale, Jul 01 2018 *)
|
|
PROG
|
(PARI) vector(40, n, n*(2*(n-1)^3+7*n-1)/6) \\ G. C. Greubel, Aug 13 2019
(Magma) [n*(2*(n-1)^3+7*n-1)/6: n in [1..40]]; // G. C. Greubel, Aug 13 2019
(Sage) [n*(2*(n-1)^3+7*n-1)/6 for n in (1..40)] # G. C. Greubel, Aug 13 2019
(GAP) List([1..40], n-> n*(2*(n-1)^3+7*n-1)/6); # G. C. Greubel, Aug 13 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 29 2003.
|
|
STATUS
|
approved
|
|
|
|