OFFSET
1,2
COMMENTS
Diagonal of triangle in A081491.
With offset 0, this is the binomial transform of (0,1,1,2,0,0,0,...). - Paul Barry, Jul 03 2003
Equals row sums of triangle A144337. - Gary W. Adamson, Sep 18 2008
a(n) = sum of first (n-1) squares + n; e.g., a(5) = 35 = (1 + 4 + 9 + 16 + 5). - Gary W. Adamson, Aug 27 2010
Equals the number of functions from {1,2,...,n} to {1,2,...,n} that occur as compositions of U(x) = min{x+1,n} and D(x) = max{x-1,1}, including the identity function (the empty composition). Problem 11901 in The American Mathematical Monthly, volume 123, page 399, April 2016), proposed by Don Knuth, asked for the count of such functions (solution submitted to Monthly by Jerrold W. Grossman and Serge Kruk, August 21, 2016). - Jerrold Grossman, Aug 21 2016
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Jerrold W. Grossman and Serge Kruk, Solution to Problem 11901 in The American Mathematical Monthly, 2016
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = n*(2*n^2 -3*n +7)/6 = C(n, 1) + C(n, 2) + 2*C(n, 3). - Paul Barry, Jul 03 2003
E.g.f.: exp(x)*(x +x^2/2 +x^3/3).
O.g.f.: x*(1-x+2*x^2)/(1-x)^4. - Colin Barker, Jul 28 2012
a(n) = 2*n + Sum_{i=1..n} (i^2 - 2*i). - Wesley Ivan Hurt, Feb 25 2014
MAPLE
with(combinat):a:=n->sum(fibonacci(3, i), i=0..n): seq(a(n), n=0..42); # Zerinvary Lajos, Mar 20 2008
MATHEMATICA
Table[n*(2*n^2-3*n+7)/6, {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Nov 07 2008, modified by G. C. Greubel, Aug 13 2019 *)
PROG
(PARI) my(x='x+O(x^50)); Vec(serlaplace(exp(x)*(x+x^2/2+x^3/3)))
(Magma) I:=[1, 3, 8, 18]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 28 2014
(Sage) [n*(2*n^2-3*n+7)/6 for n in (1..50)] # G. C. Greubel, Aug 13 2019
(GAP) List([1..50], n-> n*(2*n^2-3*n+7)/6); # G. C. Greubel, Aug 13 2019
(Python)
def A081489(n): return n*(n*((n<<1)-3)+7)//6 # Chai Wah Wu, Nov 05 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Mar 25 2003
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 29 2003
New name, using the formulas of Paul Barry, Joerg Arndt, Feb 28 2014
STATUS
approved