Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Mar 04 2022 13:05:42
%S 5,14,46,160,574,2100,7788,29172,110110,418132,1595620,6113744,
%T 23505356,90633800,350351640,1357278300,5268292830,20483876820,
%U 79765662900,311038321440,1214362277700,4746455801880,18570960418920,72728638093800
%N Start with Pascal's triangle; a(n) is the sum of the numbers on the periphery of the n-th central rhombus containing exactly 4 numbers.
%H Qi Wang, <a href="https://arxiv.org/abs/1910.01937">Tau-tilting finite simply connected algebras</a>, arXiv:1910.01937 [math.RT], 2019. See Example 5.1 and table page 17.
%F a(n) = (9*n-4)*Catalan(n-1) = (9*n-4)*binomial(2*(n-1), (n-1))/n. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
%F a(n) = Sum_{k=0..n} A029635(n,k)^2 for n>=1, where A029635 is the Lucas triangle. - _Paul D. Hanna_, Oct 17 2017
%e The first three rhombuses are
%e ...1...........2.........6
%e .1...1.......3...3.....10..10
%e ...2......,....6.....,...20
%e and the corresponding sums are a(1) =5, a(2) =14 and a(3) =46.
%p seq((9*n-4)*binomial(2*(n-1),(n-1))/n,n=1..26); # C. Ronaldo, Dec 20 2004
%o (PARI) { A029635(n, k) = if( k<0 || k>n, 0, (n==0) + binomial(n, k) + binomial(n-1, k-1))}; \\ program from Michael Somos in A029635
%o {a(n) = sum(k=0,n,A029635(n, k)^2)} \\ _Paul D. Hanna_, Oct 17 2017
%o for(n=1,30,print1(a(n),", "))
%Y Cf. A081494, A081495, A081497, A029635.
%K nonn
%O 1,1
%A _Amarnath Murthy_, Mar 25 2003
%E More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004