login
A132130
McKay-Thompson series of class 10D for the Monster group with a(0) = 6.
4
1, 6, 21, 62, 162, 378, 819, 1680, 3276, 6138, 11145, 19662, 33840, 57048, 94362, 153432, 245757, 388218, 605466, 933414, 1423614, 2149586, 3215844, 4769544, 7016572, 10243896, 14848809, 21378276, 30582360, 43484304, 61473438, 86428896
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The g.f. is denoted by x_10 in Cooper 2012.
FORMULA
Expansion of q^(-1) * (chi(-q^5) / chi(-q))^6 in powers of q where chi() is a Ramanujan theta function.
Expansion of (eta(q^2) * eta(q^5) / (eta(q) * eta(q^10)))^6 in powers of q.
Euler transform of period 10 sequence [ 6, 0, 6, 0, 0, 0, 6, 0, 6, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (v - u^2) * (v - w^2) - u*w * (12*(1 + v^2) - 20*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = f(t) where q = exp(2 Pi i t).
G.f.: x^(-1) * (Product_{k>0} (1 + x^k) / (1 + x^(5*k)))^6.
G.f.: 1 / ( x * Product_{k>0} P(10,x^k)^6 ) where P(n,x) is the n-th cyclotomic polynomial.
a(n) = A058100(n) unless n=0.
a(n) ~ exp(2*Pi*sqrt(2*n/5)) / (2^(3/4) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 06 2015
EXAMPLE
G.f. = 1/q + 6 + 21*q + 62*q^2 + 162*q^3 + 378*q^4 + 819*q^5 + 1680*q^6 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q^-1 (QPochhammer[ q^5, q^10] / QPochhammer[ q, q^2])^6, {q, 0, n}]; (* Michael Somos, Dec 07 2013 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^5 + A) / (eta(x + A) * eta(x^10 + A)))^6, n))};
CROSSREFS
Cf. A058100.
Sequence in context: A048476 A122678 A256569 * A022571 A321947 A291226
KEYWORD
nonn,changed
AUTHOR
Michael Somos, Aug 11 2007, Aug 09 2008
EXTENSIONS
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar
STATUS
approved