OFFSET
-1,2
COMMENTS
LINKS
Seiichi Manyama, Table of n, a(n) for n = -1..10000
S. Cooper, Sporadic sequences, modular forms and new series for 1/pi, Ramanujan J. (2012).
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1) * (chi(-q^5) / chi(-q))^6 in powers of q where chi() is a Ramanujan theta function.
Expansion of (eta(q^2) * eta(q^5) / (eta(q) * eta(q^10)))^6 in powers of q.
Euler transform of period 10 sequence [ 6, 0, 6, 0, 0, 0, 6, 0, 6, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (v - u^2) * (v - w^2) - u*w * (12*(1 + v^2) - 20*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = f(t) where q = exp(2 Pi i t).
G.f.: x^(-1) * (Product_{k>0} (1 + x^k) / (1 + x^(5*k)))^6.
G.f.: 1 / ( x * Product_{k>0} P(10,x^k)^6 ) where P(n,x) is the n-th cyclotomic polynomial.
a(n) = A058100(n) unless n=0.
a(n) ~ exp(2*Pi*sqrt(2*n/5)) / (2^(3/4) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 06 2015
EXAMPLE
G.f. = 1/q + 6 + 21*q + 62*q^2 + 162*q^3 + 378*q^4 + 819*q^5 + 1680*q^6 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q^-1 (QPochhammer[ q^5, q^10] / QPochhammer[ q, q^2])^6, {q, 0, n}]; (* Michael Somos, Dec 07 2013 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^5 + A) / (eta(x + A) * eta(x^10 + A)))^6, n))};
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Michael Somos, Aug 11 2007, Aug 09 2008
EXTENSIONS
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar
STATUS
approved