login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=1..n} Fibonacci(2i-1)^2.
6

%I #43 Sep 08 2022 08:45:16

%S 0,1,5,30,199,1355,9276,63565,435665,2986074,20466835,140281751,

%T 961505400,6590256025,45170286749,309601751190,2122041971551,

%U 14544692049635,99690802375860,683290924581349,4683345669693545

%N a(n) = Sum_{i=1..n} Fibonacci(2i-1)^2.

%D A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 234.

%H Belgacem Bouras, <a href="http://www.emis.de/journals/JIS/VOL16/Bouras/bouras4.html">A New Characterization of Catalan Numbers Related to Hankel Transforms and Fibonacci Numbers</a>, Journal of Integer Sequences, 16 (2013), #13.3.3.

%H M. Dougherty, C. French, B. Saderholm, W. Qian,, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/French/french2.html">Hankel Transforms of Linear Combinations of Catalan Numbers</a>, J. Int. Seq. 14 (2011) # 11.5.1.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (9,-16,9,-1).

%F G.f.: x*(1-4*x+x^2) / ((1-7*x+x^2)(1-x)^2).

%F a(n) = (1/5)*(Fibonacci(4n) + 2n).

%F a(n) = (floor(5*n*phi) + 4*Fibonacci(4*n))/20, where phi =(1+sqrt(5))/2. - _Gary Detlefs_, Mar 10 2011

%F a(n) = (8*(n+2)*(Sum_{k=1..n} 1/(2*k^2 + 6*k + 4)) + Fibonacci(4*n))/5. - _Gary Detlefs_, Dec 07 2011

%F a(n) = | Sum_{i=0..2n-1} (-1)^i*F(i)*F(i+1) |, where F(n) = Fibonacci numbers (A000045). - _Rigoberto Florez_, May 04 2019

%t Table[(Fibonacci[4n]+2n)/5, {n,0,20}] (* _Rigoberto Florez_, May 04 2019 *)

%o (Magma) [(1/5)*(Fibonacci(4*n)+2*n): n in [0..50]]; // _Vincenzo Librandi_, Apr 20 2011

%o (PARI) a(n)=(fibonacci(4*n)+2*n)/5 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Partial sums of A081068. Bisection of A077916.

%K nonn,easy

%O 0,3

%A _Ralf Stephan_, Feb 08 2005