login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=0..n-1} Sum_{j=0..i} (i-j+1)^j.
5

%I #29 Oct 04 2024 11:23:31

%S 0,1,3,7,16,39,105,315,1048,3829,15207,65071,297840,1449755,7468541,

%T 40555747,231335960,1381989881,8623700811,56078446615,379233142800,

%U 2662013133295,19362917622001,145719550012299,1133023004941272,9090156910550109,75161929739797519

%N a(n) = Sum_{i=0..n-1} Sum_{j=0..i} (i-j+1)^j.

%C Partial sums of A026898.

%C Antidiagonal sums of array A103438.

%C Row sums of A123490. - _Paul Barry_, Oct 01 2006

%H Alois P. Heinz, <a href="/A103439/b103439.txt">Table of n, a(n) for n = 0..600</a>

%H Carlos M. da Fonseca and Anthony G. Shannon, <a href="https://doi.org/10.7546/nntdm.2024.30.3.491-498">A formal operator involving Fermatian numbers</a>, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.

%F a(n+1) = Sum_{k=0..n} ((k+2)^(n-k) + k)/(k+1). - _Paul Barry_, Oct 01 2006

%F G.f.: (G(0)-1)/(1-x) where G(k) = 1 + x*(2*k*x-1)/(2*k*x+x-1 - x*(2*k*x+x-1)^2/(x*(2*k*x+x-1) + (2*k*x+2*x-1)/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 26 2013

%p b:= proc(i) option remember; add((i-j+1)^j, j=0..i) end:

%p a:= proc(n) option remember; add(b(i), i=0..n-1) end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Dec 02 2019

%t Join[{0},Table[Sum[Sum[(i-j+1)^j,{j,0,i}],{i,0,n}],{n,0,30}]] (* _Harvey P. Dale_, Dec 03 2018 *)

%o (Magma) [0] cat [(&+[ (&+[ (k-j+1)^j : j in [0..k]]) : k in [0..n-1]]): n in [1..30]]; // _G. C. Greubel_, Jun 15 2021

%o (Sage) [sum(sum((k-j+1)^j for j in (0..k)) for k in (0..n-1)) for n in (0..30)] # _G. C. Greubel_, Jun 15 2021

%o (PARI) a(n) = sum(i=0, n-1, sum(j=0, i, (i-j+1)^j)); \\ _Michel Marcus_, Jun 15 2021

%Y Cf. A026898, A103438, A123490.

%K nonn

%O 0,3

%A _Ralf Stephan_, Feb 11 2005

%E Name edited by _Alois P. Heinz_, Dec 02 2019