login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263316
Number of lattice paths from (0,0) to (n,n) which do not go above the diagonal x=y using steps (1,k), (k,1) with k>=2.
4
1, 0, 0, 1, 1, 3, 7, 16, 40, 98, 246, 624, 1596, 4120, 10708, 28009, 73673, 194743, 517067, 1378365, 3687665, 9898417, 26649117, 71943947, 194717215, 528236599, 1436122339, 3912244667, 10677558423, 29192753795, 79944089343, 219261036592, 602226736360
OFFSET
0,6
LINKS
EXAMPLE
a(0) = 1: [(0,0)].
a(3) = 1: [(0,0),(2,1),(3,3)].
a(4) = 1: [(0,0),(3,1),(4,4)].
a(5) = 3: [(0,0),(3,1),(4,3),(5,5)], [(0,0),(2,1),(4,2),(5,5)], [(0,0),(4,1),(5,5)].
a(6) = 7: [(0,0),(2,1),(3,3),(5,4),(6,6)], [(0,0),(2,1),(4,2),(5,4),(6,6)], [(0,0),(4,1),(5,4),(6,6)], [(0,0),(4,1),(5,3),(6,6)], [(0,0),(3,1),(5,2),(6,6)], [(0,0),(2,1),(5,2),(6,6)], [(0,0),(5,1),(6,6)].
MAPLE
a:= proc(n) option remember; `if`(n<5, [1, 0$2, 1$2][n+1],
((n-3)*a(n-1) +(5*n-5)*a(n-2) +(3*n-3)*a(n-3)
-(4*n-20)*a(n-4) -(4*n-16)*a(n-5))/(n+1))
end:
seq(a(n), n=0..40);
MATHEMATICA
a[n_] := a[n] = If[n < 5, {1, 0, 0, 1, 1}[[n+1]], ((n-3)a[n-1] + (5n-5)a[n-2] + (3n-3)a[n-3] - (4n-20)a[n-4] - (4n-16)a[n-5])/(n+1)];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 25 2023, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 14 2015
STATUS
approved