login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263313
Permutation of the nonnegative integers: [4k+3, 4k, 4k+1, 4k+2, ...].
3
3, 0, 1, 2, 7, 4, 5, 6, 11, 8, 9, 10, 15, 12, 13, 14, 19, 16, 17, 18, 23, 20, 21, 22, 27, 24, 25, 26, 31, 28, 29, 30, 35, 32, 33, 34, 39, 36, 37, 38, 43, 40, 41, 42, 47, 44, 45, 46, 51, 48, 49, 50, 55, 52, 53, 54, 59, 56, 57, 58, 63, 60, 61, 62, 67, 64, 65
OFFSET
0,1
FORMULA
G.f.: (3-3*x+x^2+x^3+2*x^4)/((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1)+a(n-4)-a(n-5) for n>4.
a(n) = n+1-2*(-1)^((n+1)*(n+2)*(n+3)/2).
a(2n) = A166519(n), a(2n+1) = A005843(n).
a(n) = n+(-1)^n+2*cos(n*Pi/2). - Wesley Ivan Hurt, May 09 2021
Sum_{n>=0, n!=1} (-1)^n/a(n) = log(2) (A002162). - Amiram Eldar, Dec 25 2023
MAPLE
A263313:=n->n+1-2*(-1)^((n+1)*(n+2)*(n+3)/2): seq(A263313(n), n=0..100);
MATHEMATICA
Table[n + 1 - 2*(-1)^((n + 1)*(n + 2)*(n + 3)/2), {n, 0, 100}] (* or *) CoefficientList[Series[(3 - 3*x + x^2 + x^3 + 2*x^4)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x]
Flatten[RotateRight/@Partition[Range[0, 100], 4]] (* or *) LinearRecurrence[ {1, 0, 0, 1, -1}, {3, 0, 1, 2, 7}, 100] (* Harvey P. Dale, Jul 01 2019 *)
PROG
(Magma) [n+1-2*(-1)^((n+1)*(n+2)*(n+3) div 2) : n in [0..100]];
(PARI) Vec((3-3*x+x^2+x^3+2*x^4)/((x-1)^2*(1+x+x^2+x^3)) + O(x^100)) \\ Altug Alkan, Oct 19 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 19 2015
STATUS
approved