The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144388 Triangle T(n,k) = binomial(n, k) + ((-1)^(n + k))*n*binomial(n - 1, k), T(0,0) = 1, read by rows, 0 <= k <= n. 1
 1, 0, 1, 3, 0, 1, -2, 9, 0, 1, 5, -8, 18, 0, 1, -4, 25, -20, 30, 0, 1, 7, -24, 75, -40, 45, 0, 1, -6, 49, -84, 175, -70, 63, 0, 1, 9, -48, 196, -224, 350, -112, 84, 0, 1, -8, 81, -216, 588, -504, 630, -168, 108, 0, 1, 11, -80, 405, -720, 1470, -1008, 1050, -240, 135, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA T(n,k) = [x^k] ((x + 1)^n - n*(x - 1)^(n - 1)). Sum_{k=0..n} T(n,k) = A151821(n-1), n >= 1. EXAMPLE Triangle begins:    1;    0,   1;    3,   0,    1;   -2,   9,    0,    1;    5,  -8,   18,    0,    1;   -4,  25,  -20,   30,    0,     1;    7, -24,   75,  -40,   45,     0,    1;   -6,  49,  -84,  175,  -70,    63,    0,    1;    9, -48,  196, -224,  350,  -112,   84,    0,   1;   -8,  81, -216,  588, -504,   630, -168,  108,   0, 1;   11, -80,  405, -720, 1470, -1008, 1050, -240, 135, 0, 1;   ... MATHEMATICA p[x_, n_] = (x + 1)^n - n*(x - 1)^(n - 1); Table[CoefficientList[p[x, n], x], {n, 0, 10}] // Flatten PROG (Maxima) create_list(binomial(n, k) + ((-1)^(n + k))*n*binomial(n - 1, k), n , 0, 15, k, 0, n); /* Franck Maminirina Ramaharo, Jan 25 2019 */ CROSSREFS Cf. A001787, A151821, A144389, A216973. Sequence in context: A263313 A071818 A014513 * A133513 A101000 A035653 Adjacent sequences:  A144385 A144386 A144387 * A144389 A144390 A144391 KEYWORD sign,easy,tabl AUTHOR Roger L. Bagula and Gary W. Adamson, Oct 01 2008 EXTENSIONS Edited and offset corrected by Franck Maminirina Ramaharo, Jan 25 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 23:56 EST 2022. Contains 350572 sequences. (Running on oeis4.)