login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218321
Number of lattice paths from (0,0) to (n,n) which do not go above the diagonal x=y using steps (1,k), (k,1) with k>=0.
4
1, 2, 8, 39, 212, 1230, 7458, 46689, 299463, 1957723, 12996879, 87383754, 593794311, 4071599216, 28136612051, 195756911831, 1370068168916, 9639404836227, 68138551870047, 483682445360748, 3446462104490724, 24642148415136556, 176743014104068411
OFFSET
0,2
LINKS
FORMULA
G.f.: (sqrt(x^4+4*x^3+2*x^2-8*x+1)+x^2+1-sqrt(2*(x^4+2*x^3-6*x^2-4*x+1+(x^2+1)*sqrt(x^4+4*x^3+2*x^2-8*x+1))))/(4*x^2). - Mark van Hoeij, Apr 17 2013
EXAMPLE
a(2) = 8: [(0,0),(1,0),(1,1),(2,1),(2,2)], [(0,0),(1,0),(1,1),(2,2)], [(0,0),(1,0),(2,0),(2,1),(2,2)], [(0,0),(1,0),(2,1),(2,2)], [(0,0),(1,0),(2,2)], [(0,0),(1,1),(2,1),(2,2)], [(0,0),(1,1),(2,2)], [(0,0),(2,1),(2,2)].
MAPLE
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
add(b(x-i, y-1), i=0..x) +add(b(x-1, y-j), j=0..y) -b(x-1, y-1)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..30);
# second Maple program gives series:
series(RootOf(x^4*T^4-(x^2+1)*x^2*T^3-(x^2-2*x-2)*x*T^2-(x^2+1)*T+1, T), x=0, 31); # Mark van Hoeij, Apr 17 2013
MATHEMATICA
b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - i, y - 1], {i, 0, x}] + Sum[b[x - 1, y - j], {j, 0, y}] - b[x - 1, y - 1]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Sep 01 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 25 2012
STATUS
approved